
Evolving Virtual Creatures May 26, 1995 1

Evolving Virtual Creatures

Kenrick E. Drew
Andrew S. Forsberg

Paton J. Lewis

cs224 Final Project Proposal
Brown University

April 13, 1995

Abstract

We propose to implement a two-dimensional version of the work
described in Karl Sims’s 1994 SIGGRAPH Proceedings paper
“Evolving Virtual Creatures.” [SIMSa] We will investigate goal-
directed genetic algorithms and the dynamics of complex rigid bod-
ies. Our application will generate animations of virtual creatures
exhibiting evolved behaviors. The user will specify the characteris-
tics of the environment in which two-dimensional creatures will
evolve. An initial random set of creatures will be created and simu-
lated, and those that are successful at specified behaviors will be
selected for breeding. Goal behaviors will include jumping, walk-
ing, and swimming. Once the program has bred several generations
of creatures, survivors may be saved for future examination.

Overview

Motivation. One of the great attractions of software development is the outlet for
creativity. Genetic algorithms provide an especially effective outlet by adding
unpredictable elements that make the creative process interactive and the results
surprising. In addition, articulated rigid body dynamics are used throughout com-
puter animation, making it a useful topic of study for students interested in interac-
tive graphics and animation. Finally, by combining genetic algorithms, articulated
rigid body dynamics, and computer graphics it is possible to model and simulate
creations that would be difficult to invent and impossible to encounter in everyday
life.

Functional Description. The user will begin by specifying system parameters
such as initial population size, number of generations to evolve, mutation rates,
and breeding methods. The application will generate an initial random set of crea-
tures and then simulate each creature in the specified environment. After simula-
tion, creatures will be selected for breeding based on performance. The parent and

Evolving Virtual Creatures May 26, 1995 2

offspring populations are then mixed, and the cycle repeats, starting with the simu-
lation stage.

We plan to have several hundred creatures in each simulation cycle. To handle
computational requirements, the ability to perform creature simulations in parallel
will be built in at the start. Initially these parallel simulations will be executed by
multiple child processes running on a single multi-processor machine. One possi-
ble extension of this project (see below) is to extend this concept further to allow
the simulation to be distributed across multiple machines.

Extended Functional Description

Creature Morphology. Creature genotypes will be represented by directed
graphs, where nodes represent body parts or neurons, and edges represent connec-
tions. A node may be connected to itself either directly or through a cycle. Each
node will contain a sensor, effector, and the type of joint connecting it to its parent.

When a genotype is expressed to form a phenotype, the directed graph will be tra-
versed and neurons and body parts will be created accordingly. Figure one illus-
trates this relationship. To prevent infinite cycles, a node will contain a limit for the
number of times that it can be expressed. A Boolean value will indicate whether
multiple connections to that node should be expressed in a symmetric fashion.

A creature phenotype will consist of one or more connected body parts represented
by 2D rectangles, and a brain modeled by a collection of interconnected function
nodes.

Body Parts. Body parts will be connected by joints, which may be of type rigid or
rotary. A rigid joint connects two body parts but does not allow relative move-
ment. A rotary joint can rotate around the axis perpendicular to the plane in which
the body parts exist. A rotary joint includes motion constraints as indicated by its
associated gene. When an effector attempts to move a joint, the joint constrains the
motion before it applies forces to its associated body parts. Note that joints do not
have a physical representation—they merely describe the point of contact and
motion constraints between two rigid bodies.

Sensors. Creature body parts may have sensors associated with them. We will
implement joint sensors and contact sensors. Joint sensors will indicate the current
scalar value (whether radians or length) associated with a joint. A contact sensor is
associated with any one face of a body part. A contact sensor signals any form of
contact, including creature self-contact. The brain will query sensors for informa-
tion about the world.

Neurons. Neurons are functional units with one or more scalar inputs that produce
one scalar output. Inputs can come from sensors or neurons. Outputs may be con-
nected to neurons or effectors. A single output may be connected to multiple
inputs, and feedback is allowed. Inputs are weighted by values derived from asso-

Evolving Virtual Creatures May 26, 1995 3

ciated genes. Neurons may represent any one of the following functions: sum,
product, divide, sum-threshold, greater-than, sign-of, min, max, abs, if, interpo-
late, sin, cos, atan, log, expt, sigmoid, integrate, differentiate, smooth, memory,
oscillate-wave, and oscillate-saw. Some of these functions act on values collected
over time, and in those cases the neuron will retain a short history of inputs.

Effectors. An effector receives a scalar value from the brain and multiplies that
value by the weight specified by an associated gene. We will initially implement
only one effector type, the joint effector. A joint effector will drive an associated
joint by passing a scalar value on to that joint. The joint will interpret that value in
units appropriate for the joint—for example, radians or length.

Simulation. Creature phenotypes will be simulated in a 2D environment with
user-specified characteristics. These parameters include gravity, viscosity, whether

(segment)

(body segment)

(leg segment)

(limb segment)(body)

(head)

hierarchy of 3D parts.Phenotype:Genotype: directed graph.

Figure 1: Designed examples of genotype graphs and corresponding creature morphologies.

Evolving Virtual Creatures May 26, 1995 4

ground exists, and how much friction and elasticity the ground has. If present, the
ground will be a flat plane of infinite dimensions.

Creatures will be simulated in batch to determine which ones meet the selection
criteria. The simulator will process a creature phenotype and return information
describing the creature’s performance. For the behaviors jumping, walking and
swimming, this will just be the final and maximum distances that the creature
moved from the origin. Creatures may be simulated in an associated viewport so
that the user may examine the creature in its environment.

Physical elements simulated will include articulated body dynamics, collision
detection, collision response, friction, and viscosity. Accelerations will be inte-
grated with the Adaptive Runge-Kutta technique to determine velocities and posi-
tions.

Selection. After simulation, creatures will be selected for breeding based on how
well they perform specified tasks. The user may choose to breed creatures so that
they are selected for success at performing one of the following behaviors: jump-
ing, walking, or swimming. Jumping creatures will be judged by how high they
jump. Walking creatures will be judged by how far they move from the start posi-
tion in the allotted time. This distance will be scaled by creature size so that large
creatures that fall over are not selected for that ability. Swimming creatures will be
judged in a manner similar to walking creatures, except that consistent forward
motion will be rewarded over drifting motion resulting from a single initial quick
movement.

Breeding. Once creatures have been selected for breeding they produce a number
of offspring proportional to their degree of success at the desired behavior. Crea-
tures are bred using one of three methods: asexual, sexual by crossover, and sexual
by grafting. The breeding method will be specified by the user as an attribute of
the creature, or as a percentage of each generation to be bred with each method.

Crossover breeding is performed by aligning the gene graphs for the parents, tra-
versing one parent’s gene graph, and at some randomly selected point crossing
over to the other parent’s gene graph. Crossovers can occur more than once.

Grafting breeding is performed by randomly pruning one section of one parent’s
gene graph and grafting on a random portion of the other parent’s graph at that
point. These methods are illustrated in figure two.

Internal node parameters can be mutated, after which a new random node may be
added, followed by possible connection mutations. Each type of mutation has a
probability associated with it. These probabilities are scaled so that each creature
experiences exactly one mutation 50% of the time, zero mutations 25% of the
time, and more than one mutation 25% of the time.

Parallel Implementation. By far the most compute-intensive portion of this
project is the creature simulation. Because of this, we intend to exploit multi-pro-

Evolving Virtual Creatures May 26, 1995 5

cessor workstations by spawning multiple processes to perform simulations. The
architecture that supports this will be designed so that it may be easily extended to
use a distributed, multi-workstation package (such as quahog) if there is sufficient
time remaining at the end of the project.

User Interface

The project will in fact include three applications—a master control application, an
application that performs simulations, and an application that displays creature
simulations in real time. The control application will collect initial conditions from
the user, generate the initial creature population, spawn instances of the simulator,
evaluate simulator results to determine creature fitness, and perform the mutations.
Once the final generation of creatures has been created, the control application can
spawn instances of the viewer so that the user can view creature simulations in real
time.

Before an initial random population is created, the user will outline constraints on
the domain of the structure of the genomes in the initial population. He will also
specify the selection criteria, as well as other gross parameters such as environ-
ment characteristics, initial population size, and the number of generations desired.
After this, the controller program will run without intervention until completion.

Because GP consumes a great deal of processing time when handling X events, we
may decide to implement our controlling application without it so that all parame-
ters are specified on the command line or in a parameter file.

Figure 2: Two methods for mating directed graphs.

parent 1

child

parent 2

a. Crossovers:

parent 1 parent 2

child

b. Grafting:

Evolving Virtual Creatures May 26, 1995 6

Key Algorithms

Main Loop.

I. Collect system parameters from user

II. Generate initial random genome population

III. Express genotypes

IV. Simulate phenotypes in environment

V. Evaluate phenotypes for fitness

VI. Breed

VII. Allow user to review and save creatures

Articulated Body Dynamics.

I. Collect explicit forces and torques
These external forces include gravity, impulse, contact and effector
forces.

II. Construct constraint-force equation
Construct the constraint equation for the current time step. The con-
straint equation is a set of linear constraint equations expressed in
matrix form. When solved, this equation will determine the set of
internal forces required to satisfy the constraints of the system once
those internal forces are combined with the external forces. The
constraint-force equation for a single constraint is:

where the i represent the bodies, the j represent constraints, Γi is

the net force on body i, Gi
j is a matrix which in conjunction with

describes the constraint forces on body i, Λi is the net torque on

body i, Hi
j is a matrix which in conjunction with describes the

constraint torques on body i, and are the external forces and

torques, τ is the timestep (∆t), is measure of the deviation of the

constraints, is the rate of change of , and is the part of the
acceleration of that is independent of net force and net torque.

III. Solve constraint-force equation
We will use a least-squares solution solver in the Matrix package to
solve the system of constraint-force equations. This method is
required because the system is over-determined. The system is

Γ i
Gj

i Λi
Hj

i
+ 

 
Fcj

i
∑ 

  Γ i
FE

i
Λi

TE

i
+ 

  β 2
τ
---D

1() 1

τ2
-----D+ + +

i
∑+

j
∑ 0=

Fcj

Fcj

FE

i
TE

i

D

D
1()

D β

D

Evolving Virtual Creatures May 26, 1995 7

over-determined in part due to the fact that we are using dependent
coordinates. We are using dependent coordinates because they sim-
plify the task of determining absolute cartesian coordinates of each
component of the system.

IV. Compute net forces and torques
Combine the forces collected in part I and computed in part III,
compute the resulting accelerations, and pass those accelerations on
to the Collision Detection algorithm.

Collision Detection. In the following, I is the set of pairs of interpenetrating
objects. C is the set of pairs of contacting objects, where contact is indicated by
low-velocity objects within some distance ε of each other. If a collision is detected,
the algorithm performs a binary search to find the time step at which the interpene-
trating bodies are within ε of each other. world->evalDynamics(t) inte-
grates accelerations and velocities to determine velocities and positions at the
specified time.

t ← t + ∆t
world->evalDynamics(t)
computeCollisions(C, I0)

if (I0 ≠ ∅)

I ← I0
s ← 2
do

if (I ≠ ∅)
t ← t - ∆t/s

else
t ← t + ∆t/s

s ← s × 2
world->evalDynamics(t)
computeCollisions(C, I)

while ((I ≠ ∅) ∨ (¬∃ e. e ∈ I0 ∧ e ∈ C))

computeResponse(C)

Modules

See the class hierarchy graphs for a pictorial representation of class hierarchies and
containment relationships. The modules (also known as “packages”) listed below
are distinguished by a common functional nature, and will often contain more than
one class. Modules have well-defined APIs which will not change much during
application development.

Genome. The Genome module will contain the Genome class and the Gene class
and subclasses. The Genome class will contain methods for expressing a genome

Evolving Virtual Creatures May 26, 1995 8

as a phenotype, mutating, and reading and writing creatures to files. The Gene sub-
class constructors will create initially randomized genes.

BodyPart. The BodyPart module will contain the BodyPart class. A BodyPart
object will contain a joint, a joint sensor, an effector, a list of additional sensors,
and a integration object. Note that body part scale, rotation and translation infor-
mation are encapsulated within the integration object.

NeuralLink. The NeuralLink module will contain the NeuralLink class. The Neu-
ralLink class is a superclass common to effectors, neurons, and sensors. A Neural-
Link subclass inherits the ability to have multiple inputs and one output. This
allows us to exploit polymorphism—for example, a “connect-from” list of pointers
to NerualLink objects could have both sensors and neurons in it, while a similar
“connect-to” list could contain both neurons and effectors. This greatly simplifies
the tasks of connecting components in the brain and propagating signals through it
during simulations.

Sensor. The Sensor module will contain the Sensor class and subclasses. A contact
sensor contains a pointer to the BodyPart that it is associated with, and a joint sen-
sor contains a pointer to the joint with which it is associated. A sensor subclass
may interact with the world class to detect other objects in the environment.

Joint. The Joint module will contain the Joint class and subclasses. A joint con-
tains pointers to the two body parts that it connects. An associated joint effector
will update the joint angle or position, and the joint in turn updates the forces on
the body parts, after applying its motion constraints.

Effector. The Effector module will contain the effector class and subclasses. A
joint effector contains a pointer to the joint with which it is associated.

Brain. The Brain module will contain the Brain class and the Neuron class and
subclasses. The brain contains a list of neurons, sensors, and effectors associated
with it, and the connections among them. It also contains a “think” method that
iterates over effectors and determines inputs values to those effectors and their
connected neurons by performing lazy evaluation.

A neuron can have one or more inputs as required by its function, and one output
(which may be connected to multiple inputs). The inputs are weighted by gene-dic-
tated values. When evaluated, a neuron will compare its localState data member
against the static globalState data member in order to prevent multiple neuron
evaluations during a single call to Brain::think(), which would otherwise occur in
neural graphs that contain cycles.

Creature. The Creature module will contain the Creature class. A creature will
contain a list of BodyPart objects and a Brain object.

Evolving Virtual Creatures May 26, 1995 9

World. The World module will contain the World class, which will contain a list
of creatures and objects (such as light sources and the ground) in the environment
being simulated. Sensor classes and the collision class will query the world object.

Simulator. The Simulator module will contain the code that performs creature
simulations. It will provide facilities for both batch simulation and interactive sim-
ulation. The manner in which batch simulations are done in parallel (whether
multi-process or distributed) will be encapsulated within this module.

Dynamics. The Dynamics module will contain the Dynamics class, the Integration
class and subclasses, and the Collision class. The Dynamics class will implement
the articulated rigid body dynamics. IntegrationARK (for Adaptive-Runge-Kutta
integration) is the only initially planned Integration subclass, but this architecture
allows us to easily try other integration techniques if we so desire. The Collision
class will implement collision detection and collision responses.

Application. The Application module will contain the mainline code for the three
applications, including the user interface components, the fitness evaluator, the
breeder code, and the viewer.

Implementation Strategy

Responsibilities. We will all work together to design the critical algorithms,
including articulated dynamics, collision detection and response, and mutation.
Once these algorithms are specified to a level of detail that allows individuals to
write code, we will each take responsibility for developing a particular subset of
the project. Andy will develop the dynamics code that takes collision response
forces and joint effector forces and solves the articulated rigid body system to
determine the resulting accelerations of the components. Ken will develop the col-
lision detection, collision response and dynamics code. Pat will implement every-
thing else, including genotype and phenotype classes, the user interface code, the
distributed processing code, and the fitness evaluation code.

Third-Party Software. We may use GP for our user interface when collecting the
parameters for the initial condition, and we will use it for the viewport when view-
ing 2D simulations. However, we will structure the code so that we can use a sepa-
rate Open/GL application as our 3D viewport should we find time to implement
that extension.

We will use the Adaptive-Runge-Kutta code provided to us for the cs224 dynamics
assignment. We will also use the Matrix and Vector packages provided then.

Development Policies. We will develop modules in such a fashion as to hide the
implementation details from the client users of those packages. Modules will be
developed and unit-tested individually. When a module passes its unit test suite it
will be promoted for use in the main application. Once a module’s API has settled,
a simple, robust, and minimally functional version will be implemented and pub-

Evolving Virtual Creatures May 26, 1995 10

lished to allow complete system testing in order to help verify that the module’s
interface design is sufficient.

Order of Development. We will implement the dynamics module first, because
we believe it is the hardest part of the application and is the most likely source of
significant problems. By implementing it first, we will have as much time as possi-
ble available to deal with any problems associated with that package, should they
arise. We will also develop the viewer and phenotype code in parallel with the
dynamics module code so that the dynamics module has a test base and some hard-
wired test case creatures. Next we will develop the genome code, the user interface
code, and the rest of the controller application. Finally, if we have time, we will
modify our code to support 3D creatures and simulations.

Milestones

04/13/95 Final Project Proposal due.

04/21/95 Articulated rigid body dynamics algorithms complete.
Including integration, multi-body collision detection, force distribution,
collision response, friction, and viscosity.

04/25/95 Mid-project in-class demonstration.
Everything complete except for creature file read/write operations.

05/01/95 Optional 3D extensions completed.
If possible, the optional 3D extensions will be completed by this date.

05/05/95 Final Project and User Guide due.

05/07/95 Demo materials completed.
Video and materials completed in preparation for final project demo.

05/08/95 Final Project demo.

Evolving Virtual Creatures May 26, 1995 11

Class Hierarchy and Containment

Sensor

+Sensor()
+~Sensor()
+virtual double read(void)=0

SensorJoint

#Joint *joint

+SensorJoint(Joint *)
+~SensorJoint()
+double read()

SensorContact

#BodyPart *part

+SensorContact(BodyPart *)
+~SensorContact()
+double read()

NeuralLink

#const int numInputs
#SignalIn input[numInputs]

+NeuralLink()
+~NeuralLink()
+virtual double read(void)=0
+Boolean connect(NeuralLink *)

Effector

+Effector()
+~Effector()
+virtual void activate(void)=0

Neuron

#static Boolean globalState
#Boolean localState

+static toggleState(void)
+Neuron()
+~Neuron()
+virtual double read()=0

EffectorJoint

#Joint *joint

+EffectorJoint(Joint *)
+~EffectorJoint()
+double read(void)
+void activate(void)

EffectorDeform (optional)

#BodyPart *container

+EffectorDeform(BodyPart *)
+~EffectorDeform()
+double read(void)
+void activate(void)

Evolving Virtual Creatures May 26, 1995 12

JointRotary

+JointRotary(BodyPart *,BodyPart *)
+~JointRotary()
+double read()

JointLinear (optional)

+JointLinear(BodyPart *,BodyPart *)
+~JointLinear()
+double read()

JointRigid

+JointRigid(BodyPart *,BodyPart *)
+~JointRigid()
+double read()

Joint

#BodyPart *parent
#BodyPart *container

+Joint(BodyPart *,BodyPart *)
+~Joint()
+virtual double read()=0

Brain

#List<Neuron> neurons
#List<Sensor> sensors
#List<Effector> effector

+Brain()
+~Brain()
+operator +=(Neuron *)
+void registerSensor(Sensor *)
+void registerEffector(Effector *)
+void think(void)

BodyPart

#Joint *joint
#JointSensor jointSensor
#Effector *effector
#List<Sensor> sensors
#Dynamics *dynamics

+BodyPart(Dynamics *,Joint *,Effector *)
+~BodyPart()

Creature

#List<BodyPart> parts
#Brain brain

+Creature()
+~Creature()
+void addPart(BodyPart *)

Evolving Virtual Creatures May 26, 1995 13

Gene

+Gene()
+~Gene()
+virtual void mutate(double probability)=0

Genome

#List<Gene> genes

+Genome()
+~Genome()
+void express(Creature *)
+void mutate(double probability)
+void read(ifstream *)
+void write(ifstream *)

GeneBodyPart

#Bool root
#Bool symmetric
#List<GeneBodyPart> connections
#List<GeneNeuron> neurons
#List<GeneSensor> sensors
#GeneJoint joint
#double width
#double height
#double repeatCount

+GeneBodyPart()
+~GeneBodyPart()
+void mutate(double)

GeneJoint

#GeneJointType type
#double min
#double max
#Vector locationParent
#Vector locationChild

+GeneJoint()
+~GeneJoint()
+void mutate(double)

GeneNeuron

#List<GeneNeuralLink> connections
#GeneNeuronType type
#double weight[3]

+GeneNeuron()
+~GeneNeuron()
+void mutate(double)

GeneSensor

#GeneSensorType type
#Vector position

+GeneSensor()
+~GeneSensor()
+void mutate(double)

GeneEffector

#GeneEffectorType type
#double weight

+GeneEffector()
+~GeneEffector()
+void mutate(double)

GeneNeuralLink

+GeneNeuralLink()
+~GeneNeuralLink()

Evolving Virtual Creatures May 26, 1995 14

NeuronSum

+double read()

NeuronProduct

+double read()

Neuron

#static Boolean globalState
#Boolean localState

+static toggleState(void)
+Neuron()
+~Neuron()
+virtual double read()=0

NeuronDivide

+double read()

NeuronSumThresh

+double read()

NeuronIf

+double read()

NeuronAtan

+double read()

NeuronGreaterThan

+double read()

NeuronSignOf

+double read()

NeuronMin

+double read()

NeuronMax

+double read()

NeuronAbs

+double read()

NeuronInterpolate

+double read()

NeuronSin

+double read()

NeuronCos

+double read()

NeuronLog

+double read()

NeuronExpt

+double read()

NeuronSigmoid

+double read()

NeuronIntegrate

+double read()

NeuronDifferentiate

+double read()

NeuronSmooth

+double read()

NeuronOscillateSaw

+double read()

NeuronOscillateWave

+double read()

NeuronMemory

+double read()

NeuronConst

#double value

+double read()

Evolving Virtual Creatures May 26, 1995 15

Possible Project Extensions

3-D Creatures and Simulations. We have designed our code from the start with
the knowledge that we will extend our implementation to three dimensions if we
have enough time at the end of the initial implementation effort.

Interactive Selection. A user could perform interactive creature selection in lieu
of automated goal-directed selection.

Distributed Processing. The parallel simulation interface could be extended to
make use of a distributed processing package such as quahog, which would allow
each generation of simulations to be distributed across multiple machines.

The Preserve. Multiple creatures could be simulated simultaneously in a closed
world, allowing interaction and possibly even predation. Collision detection pre-

GPApplication

CreatureViewerApp

+CreatureViewerApp()
+~CreatureVewerApp()

Controller main (not a class)

#World world
#List<Creatures> creatures

+void breed(void)

Integration

+Integration()
+~Integration()

IntegrationARK

+IntegrationARK()
+~IntegrationARK()

Simulator2D

+Simulator2D()
+~Simulator2D()

Simulator

+Simulator()
+~Simulator()

Dynamics

#World *world

+Dynamics(World *world)
+~Dynamics()

Simulator main (not a class)

#World world
#Creature creature

Evolving Virtual Creatures May 26, 1995 16

diction techniques outlined in [HUBB] may help optimize simulation of multiple
creatures.

Additional Joint Types. Our initial simulation domain is two-dimensional, so we
will be unable to implement many of the joint types that Karl Sims discusses. One
way to introduce more variety in creature phenotypes would be to add a linear
joint type. This joint would constrain one of its body parts to move in and out of
the other in a manner inspired by cat claws and turtles.

Should we implement 3-D creatures and simulations, we will want to add some of
the other joint types that the additional spacial dimension allows, including twist,
universal, bend-twist, twist-bend, and spherical.

Additional Effectors. Some possible additional effectors include sound and scent
emitters, and the deformation effector. Deformation effectors are encountered in
natural creatures in the form of tentacles and worms. A deformer would deform an
associated body part by scaling that body part in a nonuniform fashion. The body
part would be constrained to conserve its area. Deformers would contain additional
genetically-dictated constraints on the limits of deformation to prevent unrealistic
movements. Techniques for implementing deformation dynamics may be found in
[MILL].

Additional Senses. Some possible additional sensors include accelerometers,
additional proprioceptors, light sensors, sound sensors and smell sensors. Sound
sensors could introduce interesting behaviors if we also implemented the preserve
and allowed collisions to emit sounds. If we implemented light sensors we would
also add additional parameters that the user can specify at the outset, such as
whether a light source exists, and light source characteristics such as brightness
and location.

Additional Behaviors. Some additional possible behaviors include seeking and
flying. Seeking creatures will be judged by how closely they follow a randomly
moving light source. Flying creatures are judged in a manner similar to that for
swimming creatures, except for the fact that viscosity is much lower.

References

[BARA] Baraff, David, “Fast Contact Force Computation for Nonpenetrating
Rigid Bodies,” Proceedings of SIGGRAPH ‘94, ACM Press.

[BARZ] Barzel, Ronen, et al, “A Modeling System Based on Dynamic Con-
straints,” Computer Graphics, Volume 22, Number 4, August 1988,
ACM Press.

[DEJA] de JalÓn, Javier GarcÍa, et al, Kinematic and Dynamic Simulation of
Multibody Systems, The Real-Time Challenge, Springer-Verlag, 1994.

Evolving Virtual Creatures May 26, 1995 17

[FEAT] Featherstone, Roy, Robot Dynamics Algorithms, Kluwer Academic
Publishers, 1987.

[HUBB] Hubbard, Phillip, “Space-Time Bounds for Collision Detection,”
Unpublished, Department of Computer Science, Brown University,
1993.

[MILL] Miller, Gavin S. P., “The Motion Dynamics of Snakes and Worms,”
Computer Graphics, Volume 22, Number 4, August 1988, ACM Press.

[RAIB] Raibert, Marc H., et al, “Animation of Dynamic Legged Locomotion,”
Computer Grahpics, Volume 25, Number 4, July 1991, ACM Press.

[SHOE] Shoemake, Ken, “Animating Rotation with Quaternion Curves,” Pro-
ceedings of SIGGRAPH ‘85, ACM Press.

[SIMSa] Sims, Karl, “Evolving Virtual Creatures,” Proceedings of SIGGRAPH
‘94, ACM Press.

[SIMSb] Sims, Karl, “Evolving 3D Morphology and Behavior by Competition,”
Artificial Life IV Proceedings, MIT Press, 1994.

[WITK] Witkin, Andrew, “Particle System Dynamics,” Course Proceedings of
SIGGRAPH ‘94, ACM Press.

